packed with Porapak Q. Quantitation was performed by means of a Vidar 6300 digital integrator and standard calibration curves. Raman spectrum of solid at $-80^{\circ} \mathrm{C}: 3557 \mathrm{vw}, 3469 \mathrm{vw}, 1169 \mathrm{~m}, 1009 \mathrm{w}, 891$ $\mathrm{vw}, 848 \mathrm{vw}, 802 \mathrm{w}, 650 \mathrm{vw}, 615 \mathrm{~m}, 472 \mathrm{w}, 422 \mathrm{~s}, 382 \mathrm{~m}, 337 \mathrm{w}, 285$ $\mathrm{m}, 269 \mathrm{~m}$.

Preparation of erythro- and threo-2-($\mathbf{2}^{\prime}, 2^{\prime}, 2^{\prime}$-Trichloro- $\mathbf{1}^{\prime}$-hydroxyethyl)cyclohexanone. ${ }^{25.14}$ To a solution of $33.69 \mathrm{~g}(0.202 \mathrm{~mol})$ of 1-morpholino-1-cyclohexene ${ }^{26}$ in 100 ml of dry chloroform contained in a $300-\mathrm{ml}$ round-bottomed flask equipped with a stirring bar, addition funnel, and nitrogen inlet tube was added a solution of 31.45 $\mathrm{g}(0.213 \mathrm{~mol})$ of chloral in 50 ml of dry chloroform over a $1-\mathrm{h}$ interval. After the addition the solution was permitted to stir in a dry nitrogen atmosphere at room temperature for 2 h . At the end of the stirring period 75 ml of an acetic acid-sodium acetate buffer was added; the resulting mixture was refluxed for 2 h .

At the end of the reflux period the aqueous layer was separated from the organic layer and washed with 25 ml of HCCl_{3} and the organic layers were combined, washed with 75 ml of saturated sodium bicarbonate, 75 ml of saturated sodium chloride, and 75 ml of water and dried over anhydrous MgSO_{4}. After filtration and removal of the chloroform by rotary evaporation, 31.2 g of an oil was obtained that appeared to be about a $50: 50$ mixture of both isomers by ${ }^{1} \mathrm{H}$ NMR. The erythro and threo isomers were obtained in pure form by chromatography on silicic acid (Mallinckrodt, Silicic Acid A. R. 100 mesh, Chromatography Grade) using 20% (by volume) petroleum ether in benzene as eluent. The melting points, ir, and ${ }^{1} \mathrm{H}$ NMR spectra of the two isomers agreed with those of Kiehlman and Loo. ${ }^{14}$

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, and to the American Cancer Society for partial support of this research. Special thanks to Columbia Organic Chemical Company for the generous gift of chemical samples and to Dr. Victor F. Kalasinsky for determination of lowtemperature Raman spectra.

References and Notes

(1) W. J. Middleton and R. V. Lindsey, Jr., J. Am. Chem. Soc., 86, 4948 (1964).
(2) B. Ballou, G. Sundharadas, and M. L. Bach, Science, 185, 531 (1974).
(3) R. P. Bell, "Advances in Physical Organic Chemistry", Vol. 4, V. Gould, Ed., Academic Press, New York, N.Y., 1966, Chapter 1.
(4) Reference 3, p 8.
(5) Ch. Cloez, Ann. Chim. Phys., 9, 202 (1886).
(6) (a) '"Dictionary of Organic Compounds'", Vol. 3, Oxford University Press, New York, N.Y., 1965, p 1588; (b) R. C. Weast, Ed., "Handbook of Chemistry and Physics"', 52nd ed, Chemical Rubber Co., Cleveland, Ohio, 1971, p C-456.
(7) Similar adduct formation with stable fluorinated gem-diols has been reported by Middieton and Lindsey. ${ }^{1}$
(8) (a) J. G. Bayly, V. B. Kartha, and W. H. Stevens, Infrared Phys., 3, 211 (1963); (b) G. Herzberg, 'Molecular Spectra and Molecular Structure"', Van Nostrand-Reinhold, New York, N.Y., 1945, p 487.
(9) R. M. Silverstein and G. C. Bassler, "Spectrometric Identification of Organic Compounds", 2nd ed, Wiley, New York, N.Y., 1967, p 87.
(10) T. Cairns, G. Eglinton, and D. T. Gibson, Spectrochim. Acta, 20, 31 (1964).
(11) H. Schulze and A. Muller, Z. Naturforsch. B, 25, 148 (1970).
(12) (a) F. E. Malherbe and H. J. Bernstein, J. Am. Chem. Soc., 74, 4408 (1952); (b) O. H. Ellestad and P. Klaboe, Spectrochim. Acta, Part A, 27, 1025 (1971).
(13) G. W. A. Fowles, D. A. Rice, and R. A. Walton, Spectrochim. Acta, Part A, 26, 143 (1970).
(14) E. Kiehiman and P.-W. Loo, Can. J. Chem., 47, 2029 (1969).
(15) D. R. Powell and J. R. MacDonald, Comput. J., 15, 148 (1972).
(16) (a) Bouis, Justus Liebigs Ann. Chem., 64, 318 (1845-49); (b) LeRoyer and Duparc, ibld., 252, 334 (1889). (c) Stadeler, ibid., 111, 299, 293 (1859). See also Bielstein, 1-656, 657.
(17) P. J. Kruger and H. D. Mattee, Can. J. Chem., 42, 340 (1964).
(18) E. M. Arnett, E. J. Mitchell, and T. S. S. R. Murty, J. Am. Chem. Soc., 96, 3875 (1974).
(19) O. Hassel and J. Huoslef, Acta Chem. Scand., 8, 1953 (1954).
(20) L. Random, W. J. Hehre, and J. A. Pople, Carbohydr. Res., 25, 117 (1972).
(21) G. M. Brown and H. A. Levy, Oak Ridge National Laboratory Chemical Division Annual Report, 1962, Report ORNL-3320; J. Phys. (Paris), 25, 469 (1964).
(22) L. Pauling, 'The Nature of the Chemical Bond', 3rd ed, Cornell University Press, Ithaca, N.Y., 1960, p 496.
(23) K. Morokuma, J. Chem. Phys., 55, 1236 (1971).
(24) F. A. Miller and B. M. Harney, Appl. Spectrosc., 24, 291 (1970).
(25) A. Takeda, S. Tguboi, F. Sakai, and M. Tanabe, J. Org. Chem., 39, 3098 (1974).
(26) S. Hunig, E. Lacke, and W. Brenninger, Org. Synth., 41, 65 (1971).
(27) E. L. Johnson, K. H. Pool, et al., Anal. Chem., 38, 183 (1966).
(28) M. Kimura and K. Aoki, Nippon Kagaku Kaishi, 72, 169 (1951).

Borine Carbonyl. Bonding and Properties in the Single-Determinant Approximation

W, C. Ermler, ${ }^{1 a}$ F, D, Glasser, ${ }^{1 a}$ and C, W, Kern* 1a,b
Contribution from the Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, and the Battelle-Columbus Laboratories, Columbus, Ohio 43201. Received August 25, 1975

Abstract

Using the Hartree-Fock-Roothaan approximation, we investigate the ${ }^{1} \mathrm{~A}_{1}$ ground electronic state of borine carbonyl with two Slater and two contracted Gaussian basis sets. The total energies range from -138.6832 au for a minimal ($2 \mathrm{~s} 1 \mathrm{p} / \mathrm{ls}$) Slater basis to -139.1723 au for a near-Hartree-Fock ($9 \mathrm{~s} 5 \mathrm{pld} / 2 \mathrm{~s} \mid \mathrm{p}$)/[5s $3 \mathrm{pld} / 2 \mathrm{~s} \mid \mathrm{p}]$ Gaussian basis. The Har-tree-Fock limit energy, which is estimated to be $-139.210 \pm 0.004 \mathrm{au}$, is employed to extract the molecular extra correlation energy of $-0.21 \pm 0.01 \mathrm{au}$. Reaction energies relative to the decomposition of $\mathrm{BH}_{3} \mathrm{CO}$ are also examined in terms of Har-tree-Fock and correlation contributions. A variety of one-electron properties are computed and compared with available measurements. Hybridization of the orbitals at boron and other local features of the bonding are discerned from electron density maps.

I, Introduction

Borine carbonyl is an example of what Mulliken ${ }^{2}$ has termed a "two-way donor-acceptor complex", namely a loose confederation in which the BH_{3} and CO fragments function more or less as both electron donors and acceptors. Although the preparation, ${ }^{3 a}$ chemical properties, ${ }^{3 a}$ and molecular structure ${ }^{3 \mathrm{~b}-7}$ of this complex were first reported in

1937, only three ab initio theoretical studies ${ }^{8-10}$ have appeared on its ground ${ }^{1} \mathrm{~A}_{1}$ electronic state and these were carried out without polarization functions in the basis set. Apart from these studies, the charge distribution has been interpreted semiquantitatively in terms of resonances between valence-bond structures ${ }^{2,3 b, 5}$ and with semiempirical molecular orbital (MO) theory. ${ }^{11,12}$ It therefore appears

Table I. Experimental Equilibrium Geometry of $\mathrm{BH}_{3} \mathrm{CO}(\mathrm{au})^{a}$

Atom	X	Y	Z
B	0.0	0.0	0.0
C	0.0	0.0	2.910218
O	0.0	0.0	5.047527
H1	2.183440	0.0	-0.569003
H2	-1.091719	1.890915	-0.569003
H3	-1.091719	-1.890915	-0.569003

${ }^{a}$ Reference $5(1 \mathrm{au}=0.52917 \AA)$.
that a modern theoretical analysis of the bonding in this rather unusual molecule would be very worthwhile, especially in view of the significant advances in quantum chemistry during the period since $\mathrm{BH}_{3} \mathrm{CO}$ was first characterized.

In this paper, we examine $\mathrm{BH}_{3} \mathrm{CO}$ with two Slater- and two Gaussian-type basis sets in the Hartree-Fock approximation. The latter contain polarization functions and approach the Hartree-Fock-limit energy within an estimated 0.04 au for the $\mathrm{X}^{1} \mathrm{~A}_{1}$ state. The corresponding self-consistent field (SCF) wave functions are used for population analyses and for the determination of numerous one-electron properties which are compared with the available ex-
perimental data. The minimal basis set canonical MO's are transformed into localized inner-shell, bond-, and lone-pair orbitals which are plotted and analyzed by the tenets of valence theory. Reaction energies for the decomposition of $\mathrm{BH}_{3} \mathrm{CO}$ are also studied.

II, Calculations

The geometry adopted for our calculations is given in Table I where we list the Cartesian coordinates for the six nuclei. This skeleton corresponds to the equilibrium structure derived by Gordy, Ring, and Burg ${ }^{5}$ from the microwave spectrum (CO, BC, and BH bond lengths of 1.131 , 1.540 , and $1.194 \AA ; \mathrm{HBH}$ angle of $113^{\circ} 52^{\prime}$). Note that the molecule has $C_{3 v}$ symmetry and that the heavy atoms are aligned axially in a $\mathrm{B}-\mathrm{C}-\mathrm{O}$ sequence.
In ab initio studies, it is instructive to begin with a minimal basis set and then gradually add basis functions to allow for core and valence polarizations of the electron distribution. Our minimal Slater (STO) basis set, ($2 \mathrm{~s} 1 \mathrm{p} / 1 \mathrm{~s}$) in a commonly used notation, consists of 18 functions with the orbital exponents given in Table IIA. The exponents were taken from optimized values for $\mathrm{BH}_{3}{ }^{13}$ and $\mathrm{CO}_{2} .{ }^{14}$ The CO_{2} molecule was used instead of CO because borine carbonyl resembles CO_{2} if the BH_{3} group is regarded as a perturbed oxygen atom. To improve this ($2 \mathrm{~s} l \mathrm{p} / 1 \mathrm{~s}$) set, the p orbitals on each of the heavy atoms were split into two Sla-

Table II, Basis Sets for $\mathrm{BH}_{3} \mathrm{CO}$

Table III, Energies ${ }^{a}$ for the Ground Electronic State of $\mathrm{BH}_{3} \mathrm{CO}$ in the Single Determinant Approximation (au)

	Slater		Gaussian	
	($2 \mathrm{slp} / \mathrm{ls}$)	(2s2p/1s)	$\begin{aligned} & (9 \mathrm{~s} 5 \mathrm{p} / 4 \mathrm{~s}) \\ & {[4 \mathrm{~s} 3 \mathrm{p} / 2 \mathrm{~s}]} \\ & \hline \end{aligned}$	$\begin{aligned} & (9 \mathrm{~s} 5 \mathrm{pld} / 4 \mathrm{~s} 1 \mathrm{p}) \\ & {[4 \mathrm{~s} 3 \mathrm{pld} / 2 \mathrm{~s} \mid \mathrm{p}]} \end{aligned}$
E	-138.68323	-138.935 89	-139.089 62	-139.17228
$\epsilon\left(1 a_{1}\right)$	-20.898 6	-20.768 4	-20.738 2	-20.7181
$\epsilon\left(2 a_{1}\right)$	-11.5685	-11.5286	-11.465 8	-11.4412
$\epsilon\left(3 a_{1}\right)$	-7.5125	-7.5884	-7.560 6	-7.5516
$\epsilon\left(4 a_{1}\right)$	-1.5958	-1.634 3	-1.6089	-1.5716
$\epsilon\left(5 a_{1}\right)$	-0.8832	-0.929 9	-0.905 5	-0.9032
$\epsilon\left(6 a_{1}\right)$	-0.7537	-0.8144	-0.7978	-0.800 5
$\epsilon(1 \mathrm{e})$	-0.6863	-0.734 0	-0.7022	-0.6939
$\epsilon\left(7 \mathrm{a}_{1}\right)$	-0.530 9	-0.592 6	-0.565 6	-0.563 9
$\epsilon(2 \mathrm{e})$	-0.439 9	-0.494 5	-0.472 5	-0.4720

${ }^{a}$ The symbols E and ϵ refer to total and orbital energies, respectively.

Table IV. Reaction Energies Involving $\mathrm{BH}_{3} \mathrm{CO}^{a}$

Energy quantity	(2slp/ls)	$\begin{aligned} & (9 s 5 p / 4 s) \\ & {[4 s 3 p / 2 s]} \end{aligned}$	$\begin{aligned} & (9 \mathrm{~s} 5 \mathrm{pld} / 4 \mathrm{~s} 1 \mathrm{p}) \\ & {[4 \mathrm{~s} 3 \mathrm{pld} / 2 \mathrm{~s} 1 \mathrm{p}]} \end{aligned}$	HartreeFock ${ }^{b}$	Electron correlation ${ }^{\text {c }}$	Expt1 ${ }^{\text {d }}$
$\begin{gathered} E\left(\mathrm{BH}_{3}-\right. \\ \mathrm{CO}) \end{gathered}$	-138.6832	-139.0896	-139.1723	-139.210	-0.744	-139.954
$E\left(\mathrm{BH}_{3}\right)^{e}$	-26.3509	-26.3799	-26.3959	-26.403	-0.195	-26.598
$E(\mathrm{CO})^{f}$	-112.3260	-112.6969	-112.7662	-112.796	-0.520	-113.316
$E\left(\mathrm{~B}_{2} \mathrm{H}_{6}\right)^{g}$	-52.7152	-52.7778	-52.8211	-52.835	-0.429	-53.264
$\Delta E(1)^{h}$	4.0	8.1	6.4	6.4	18.7	25.1
$\Delta E(2)^{i}$	-0.5	4.8	-5.5	-5.5	11.9	6.4
$\Delta E(3)^{j}$	8.4	11.4	18.3	18.3	24.4	42.7

${ }^{a}$ All total energies (E) and reaction energies (ΔE) are given, respectively, in atomic units and $\mathrm{kcal} / \mathrm{mol}(1 \mathrm{au}=627.5 \mathrm{kcal} / \mathrm{mol})$. ${ }^{b}$ Estimated by the rule proposed in ref $31 .{ }^{c}$ Obtained as the difference of the Hartree-Fock and experimental energies. ${ }^{d}$ The total energies E are obtained by a suitable combination of data in ref 23 and 31 ; the ΔE 's are derived from these data by simple subtraction. All values refer to the bottom of the potential well and exclude relativistic contributions. Kinetic and mass spectroscopic measurements of ΔH_{f} for these reactions often differ markedly: for example, ΔH_{f} for $\mathrm{B}_{2} \mathrm{H}_{6}$ in reaction 3 range from -25 to $38 \mathrm{kcal} / \mathrm{mol}$ for kinetic measurements ${ }^{23}$ and from -39 to $-59 \mathrm{kcal} / \mathrm{mol}$ for mass spectroscopic measurements. ${ }^{24} \mathrm{e} R(\mathrm{~B}-\mathrm{H})=1.196 \AA, \angle \mathrm{HBH}=120^{\circ} .{ }^{f} R(\mathrm{C}-\mathrm{O})=1.1281 \AA$. ${ }_{g} R(\mathrm{~B}-\mathrm{B})=1.775 \AA, R\left(\mathrm{~B}-\mathrm{H}_{\mathrm{t}}\right)=1.196 \AA, R\left(\mathrm{~B}-\mathrm{H}_{\mathrm{b}}\right)=1.339 \AA, \angle \mathrm{H}_{\mathrm{t}} \mathrm{BH} \mathrm{t}_{\mathrm{t}}=120.2^{\circ}$. ${ }^{h}$ Reaction 1 of text. ${ }^{i}$ Reaction 2 of text. ${ }^{j}$ Reaction 3 of text.
ter functions with exponents taken from double- ζ atomic sets of Clementi. ${ }^{15}$ The resulting ($2 \mathrm{~s} 2 \mathrm{p} / 1 \mathrm{~s}$) Slater basis is defined explicitly in Table IIB. A wave function of full dou-ble- ζ quality also requires a splitting of the s exponents, which we accomplish with the ($9 \mathrm{~s} 5 \mathrm{p} / 4 \mathrm{~s}$)/[4s $3 \mathrm{p} / 2 \mathrm{~s}]$ contracted Gaussian basis (GTO) introduced by Dunning. ${ }^{16 a}$ The exponents and contraction coefficients are listed in Table IIC. To approach the Hartree-Fock limit, it is necessary to include polarization functions ${ }^{16 \mathrm{~b}}$ in the basis set, that is p functions on H and d functions on B, C, and O . Examination of calculations on other molecules (e.g., $\mathrm{H}_{2} \mathrm{O},{ }^{16 \mathrm{~b}}$ $\mathrm{N}_{2},{ }^{16 \mathrm{~b}} \mathrm{CO},{ }^{17}$ and $\mathrm{CH}_{4}{ }^{18}$) suggests that the set of exponents in Table IID are reasonably chosen for $\mathrm{BH}_{3} \mathrm{CO}$ when added to the $(9 s 5 p / 4 s) /[4 s 3 p / 2 s]$ GTO set to form a ($9 \mathrm{~s} 5 \mathrm{pld} /$ $4 s l p) /[4 s 3 p 1 d / 2 s l p]$ set.

Single-determinant, self-consistent-field (SCF) calculations of the Roothaan ${ }^{19}$ type were performed with these four basis sets at the equilibrium $\mathrm{BH}_{3} \mathrm{CO}$ geometry. For the STO and GTO sets, respectively, we employed Steven's POLYCAL system of programs ${ }^{20}$ and the POLYATOM system ${ }^{21}$ as modified according to the algorithm of Pitzer. ${ }^{22}$ The total and orbital energies corresponding to each of the four wave functions are given in Table III.

To examine energy changes for certain reactions involving $\mathrm{BH}_{3} \mathrm{CO}$, we have also performed computations on BH_{3}, CO , and $\mathrm{B}_{2} \mathrm{H}_{6}$. These are listed for the minimal STO and the Gaussian bases in Table IV where correlation contributions and experimental energies ${ }^{23}$ are also given. Orbital energies for our largest basis set are shown in Table V. The
specific reactions that we consider are

$$
\begin{gather*}
\mathrm{BH}_{3} \mathrm{CO}=\mathrm{BH}_{3}+\mathrm{CO} \tag{1}\\
2 \mathrm{BH}_{3} \mathrm{CO}=\mathrm{B}_{2} \mathrm{H}_{6}+2 \mathrm{CO} \tag{2}
\end{gather*}
$$

and

$$
\begin{equation*}
\mathrm{B}_{2} \mathrm{H}_{6}=2 \mathrm{BH}_{3} \tag{3}
\end{equation*}
$$

Inspection shows that only two of these reactions are independent, but it is useful to tabulate all three of them to determine consistency with experimental data. ${ }^{23,24}$ Population analyses for each of the four $\mathrm{BH}_{3} \mathrm{CO}$ wave functions are given in Table VI and a comparison of population analyses for the molecules involved in reaction l is presented in Table VII.

A series of one-electron properties has also been computed with each of our four wave functions. These are reported in Table VIII and include the molecular dipole moment (μ), the nuclear-electron potential ($\langle 1 / r\rangle$), electric field (\mathbf{E}), and electric-field gradients (q) at selected nuclei, and the molecular quadrupole moment at the center of mass (θ).
We have transformed minimal STO-basis set MO's so as to maximize the intra-orbital repulsion energies using a computer program by Liang, ${ }^{25}$ which accomplishes this by the method ${ }^{26}$ of principal ascents. The result is a description of the electron distribution that resembles the traditional concepts of "pair bonds", "lone pairs", and "inner shells". Table IX contains the atomic orbital coefficients for these "localized" MO's (LMO's). An analysis of the hybridiza-

Table V. Molecular Orbital Energies for the $\mathrm{BH}_{3} \mathrm{CO}$ Complex and Its Component Fragments Relative to a ($9 \mathrm{~s} 5 \mathrm{pld} / 4 \mathrm{~s} 1 \mathrm{p}$)/[4s $3 \mathrm{pld} /$ $2 s l p]$ Basis Set (au) ${ }^{a}$

$\mathrm{BH}_{3} \mathrm{CO}$	$\mathrm{BH}_{3}{ }^{b}$	CO^{b}	$\mathrm{BH}_{3}{ }^{c}$
$0.1745\left(8 \mathrm{a}_{1}\right)$	$0.0405\left(3 \mathrm{a}_{1}\right)$		CO^{c}
$0.0995(3 \mathrm{e})$	$0.1337(2 \pi)$	$0.0555\left(1 \mathrm{a}_{2}{ }^{\prime \prime}\right)$	
$-0.4720(2 \mathrm{e})$	$-0.4876(1 \mathrm{e})$	$-0.5550(5 \sigma)$	$-0.4974\left(1 \mathrm{e}^{\prime}\right)$
$-0.5639\left(7 \mathrm{a}_{1}\right)$	$-0.6373(1 \pi)$	$-0.5547(5 \sigma)$	
$-0.6939(1 \mathrm{e})$	$-0.8023(4 \sigma)$	$-0.6386(1 \pi)$	
$-0.8005\left(6 \mathrm{a}_{1}\right)$	$-0.7069\left(2 \mathrm{a}_{1}\right)$	$-1.5221(3 \sigma)$	$-0.7036\left(2 \mathrm{a}_{1}{ }^{\prime}\right)$
$-0.9032\left(5 \mathrm{a}_{1}\right)$	$-7.6142\left(1 \mathrm{a}_{1}\right)$	$-11.3631(2 \sigma)$	$-1.5241(3 \sigma)$
$-1.5716\left(4 \mathrm{a}_{1}\right)$	$-20.6665(1 \sigma)$	$-11.3618(2 \sigma)$	
$-7.5516\left(3 \mathrm{a}_{1}\right)$		$-20.6667(1 \sigma)$	
$-11.4412\left(2 \mathrm{a}_{1}\right)$			
$-20.7181\left(1 \mathrm{a}_{1}\right)$			

${ }^{a}$ The symmetry designations with respect to the $C_{3 v}, C_{\infty l}$, or $D_{3 h}$ point groups are given in parentheses. ${ }^{b}$ Geometry corresponding to that in $\mathrm{BH}_{3} \mathrm{CO}$ (see Table 1). $E_{\mathrm{BH}}^{3}=-26.3740 \mathrm{au}, E_{\mathrm{CO}}=-112.7658$ au. ${ }^{c}$ Geometry corresponding to the isolated molecules at equilibrium (see Table IV).

Table VI. Population Analysis for $\mathrm{BH}_{3} \mathrm{CO}$ Relative to Four Basis Sets ${ }^{a}$

	STO			GTO	
Popu- lation	$(2 s \mid p / 1 s)$	$(2 s 2 p / 1 s)$		$(9 s 5 p / 4 s)$ $[4 s 3 p / 2 s]$	

Gross				
atomic				
charge	0.020	-0.196	-0.244	-0.116
B	-0.054	0.031	0.034	-0.020
H	0.251	0.546	0.428	0.485
C	-0.108	-0.441	-0.286	-0.308
O				
Overlap	1.144	1.175	1.270	1.374
C. O	0.791	0.824	0.823	0.833
B. H	0.378	0.281	0.103	0.317
B, C	-0.045	-0.060	-0.048	-0.041
H, C	-0.020	-0.008	-0.030	-0.028
H. H	-0.001	-0.121	-0.002	-0.022
B. O	-0.000	-0.001	-0.003	-0.002
H. O				

${ }^{a}$ Defined according to R. S. Mulliken, J. Chem. Phys., 23, 1833 (1955).
tion of the boron atom in $\mathrm{BH}_{3} \mathrm{CO}$ is extracted from these data and is presented in Table X. A pictorial display of the LMO's can be seen from the series of electron density maps in Figures $1-5$, which were prepared using a computer program written by Palke and Hegstrom. ${ }^{27}$ Since the transformation between the canonical MO and LMO representations is unitary, integration over these LMO maps leads, with the appropriate operator as the weighting factor, to the same total property values as those given in column I of Table VIII. The contributions to the dipole moment of $\mathrm{BH}_{3} \mathrm{CO}$ from each of the LMO's relative to the boron and carbon atoms as origins are listed in Table XI.

III, Discussion

Enlargements of the basis set bring about significant improvements in the total energy of the borine carbonyl molecule. As Table III shows, the energy decreases by 0.48905 au (or about 13.3 eV) between the minimal-Slater and Gaussian-plus-polarization basis sets. The best published ab initio calculation for $\mathrm{BH}_{3} \mathrm{CO}$ to date is that of Snyder and Basch. ${ }^{9 b}$ Using ($10 \mathrm{~s} 5 \mathrm{p} / 4 \mathrm{~s}$)/[4s2p/2s] basis but a somewhat different geometry from that used here, they obtained an energy of -139.0670 au which is higher than our best value

Table VII. Population Analysis of the $\mathrm{BH}_{3} \mathrm{CO}$ Complex and lts Component Fragments Relative to a (9s5pld/4s 1 p)/[4s $3 \mathrm{pld} /$ 2s1p] Basis Set ${ }^{a}$

Population b	$\mathrm{BH}_{3} \mathrm{CO}$	$\mathrm{BH}_{3}{ }^{c}$	CO^{c}	$\mathrm{BH}_{3}{ }^{d}$	CO^{d}
Gross					
B	3.356	3.035		3.040	
	1.760	1.808	1.776		
H	0.341	0.322		0.321	
	0.679	0.731		0.741	
C	4.359		4.719		4.719
	1.156		0.939	0.940	
O	5.261		5.282	5.281	
	3.047		3.061		3.061
Overlap	0.601		0.304		0.304
C, O	0.773		0.806	0.808	
	0.331	0.287		0.289	
B. H	0.502	0.537		0.541	
	0.184				
B. C	0.133				
	0.068			0.032	
H. C	0.042	0.035		-0.069	
H. H	-0.070	-0.077			
B. O	-0.008				
	-0.014				
H. O	0.001				
	-0.003				

${ }^{a}$ Defined according to R. S. Mulliken. J. Chem. Phys., 23, 1833 (1955). ${ }^{b}$ Contributions from the $a_{1}(\sigma)$ - and e (π)-type MO's are given for each atom and atom pair. respectively. ${ }^{c}$ Geometry corresponding to that in $\mathrm{BH}_{3} \mathrm{CO}$ (see Table I). ${ }^{d}$ Geometry corresponding to the isolated molecules at equilibrium (see Table IV).
by 0.1053 au . It is instructive to compare how similar changes of basis affect the total energy of some molecule for which the Hartree-Fock limit has been better established.

Consider the water molecule for which an optimized Slater basis, ($2 \mathrm{~s} 1 \mathrm{p} / 1 \mathrm{~s}$), yields a total energy ${ }^{28}$ of -75.7033 au , while a Gaussian-plus-polarization basis, (9s5pld/4slp)/ [4s3pld/2s1p], gives ${ }^{16}-76.0467 \mathrm{au}$, for an energy lowering of 0.3434 au . The Hartree-Fock-limit energy of water is estimated to be -76.067 ± 0.001 au based on recent calculations. ${ }^{29,30}$ Thus, the Gaussian-plus-polarization basis recovers about 94% of the Hartree-Fock minus minimal-basis energy difference. If this same percentage obtains for $\mathrm{BH}_{3} \mathrm{CO}$, we would estimate the Hartree-Fock limit to be

Table VIII. Selected Properties of the Ground Electronic State of $\mathrm{BH}_{3} \mathrm{CO}(\mathrm{au})^{a}$

Property	Slater		Gaussian	
	(2slp/ls)	(2s2p/1s)	$\begin{aligned} & (9 \mathrm{~s} 5 \mathrm{p} / 4 \mathrm{~s}) \\ & {[4 \mathrm{~s} 3 \mathrm{p} / 2 \mathrm{~s}]} \end{aligned}$	$\begin{aligned} & (9 \mathrm{~s} 5 \mathrm{pld} / 4 \mathrm{slp}) \\ & {[4 \mathrm{~s} 3 \mathrm{pld} / 2 \mathrm{slp}]} \end{aligned}$
$\mu_{z}\left(\mathrm{C}^{+} \mathrm{B}^{-}\right)$	1.0633	0.5549	0.6352	0.7139
$\left\langle E_{z}\right\rangle_{\mathrm{B}}$	0.0550	0.0434	0.0325	0.0214
$\left\langle E_{z}\right\rangle_{\text {C }}$	0.1688	0.1177	0.1107	0.0124
$\left\langle E_{z}\right\rangle_{0}$	-0.4103	-0.3550	-0.2446	-0.0682
$\left\langle E_{x}\right\rangle_{\mathrm{HI}}$	-0.0334	-0.0869	-0.0595	-0.0079
$\left\langle E_{z}\right\rangle_{\mathrm{HI}}$	0.0292	0.0453	0.0299	0.0068
$\left\langle E_{x}\right\rangle_{\mathrm{H} 2}$	0.0167	0.0434	0.0298	0.0040
$\left\langle E_{y}\right\rangle_{\mathrm{H} 2}$	-0.0290	-0.0752	-0.0516	-0.0069
$\left\langle\mathcal{F}_{2}\right\rangle$	1.9070	1.7809	1.0404	0.3438
$\left\langle q_{x x}\right\rangle_{\mathrm{B}}$	-0.1625	-0.1245	-0.1130	-0.1108
$\left\langle q_{z z}\right\rangle_{B}$	0.3251	0.2490	0.2260	0.2217
$\left\langle q_{x x}\right\rangle_{0}$	-0.0407	0.1981	0.1052	0.1733
$\left\langle q_{z z}\right\rangle_{0}$	0.0813	-0.3963	-0.2103	-0.3467
$\left\langle q_{x^{\prime} x^{\prime}}\right\rangle_{\mathrm{HI}}$	-0.1009	-0.1127	-0.1036	-0.0945
$\left\langle q_{y^{\prime} y^{\prime}}\right\rangle_{\mathrm{HI}}$	-0.1218	-0.1400	-0.1315	-0.1187
$\left.\left\langle q_{z^{\prime}} z^{\prime}\right\rangle\right\rangle_{\text {HI }}$	0.2227	0.2527	0.2351	0.2132
$\begin{aligned} & \varphi \text { (rot. of } x z \\ & \text { plane) } \\ & \text { deg } \end{aligned}$	16.48	16.90	16.14	15.14
$\left\langle\theta_{x x}\right\rangle_{C M}$	2.0522	2.2038	2.3384	2.0129
$\left\langle\theta_{z z}\right\rangle_{\mathrm{CM}}$	-4.1044	-4.4075	-4.6768	-4.0258
$\langle 1 / r\rangle_{\mathrm{B}}$	16.4543	16.3870	16.4436	16.4506
$\langle 1 / r\rangle_{C}$	20.5639	20.6250	20.7289	20.7480
(1/r)o	26.2442	26.4130	26.4705	26.4849

[^0]-139.20 au based on the results in Table III. An even simpler device ${ }^{31}$ that we have found useful in approximating this limit is to multiply the ($9 \mathrm{~s} 5 \mathrm{pld} / 4 \mathrm{~s} 1 \mathrm{p}$)/[4s3pld/2s1p] energy by the ratio of the Hartree-Fock-limit energy of water to its energy calculated with this same basis set (1.00027 ± 0.00003), yielding $E(\mathrm{HF})=-139.210 \pm 0.004$ au in the case of $\mathrm{BH}_{3} \mathrm{CO}$.

If we take this value of $E_{\mathrm{BH}_{3} \mathrm{Co}}(\mathrm{HF})$ as the correct one, we can extract the molecular extra correlation energy $\Delta E_{\mathrm{BH}_{3} \mathrm{CO}}$ (corr) from the definition ${ }^{32}$

$$
\begin{equation*}
\Delta E_{\mathrm{BH}_{3} \mathrm{CO}(\text { corr })}=E_{\mathrm{BH}_{3} \mathrm{Co}}(\text { corr })-\sum_{k} E_{k}(\text { corr }) \tag{4}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
\Delta E_{\mathrm{BH}_{3} \mathrm{CO}}(\mathrm{corr})=\sum_{k} E_{k}(\mathrm{HF})-E_{\mathrm{BH}_{3} \mathrm{CO}}(\mathrm{HF})-D_{\mathrm{e}} \tag{5}
\end{equation*}
$$

where k indexes the atoms and D_{e} is the dissociation energy measured from the bottom of the potential well. We assume here that the difference between the atomic and molecular relativistic energies is negligible. Given the atomic HartreeFock energies ${ }^{33}$ which sum to -138.527 au and the value ${ }^{6,23}$ of $D_{\mathrm{e}}=0.90 \pm 0.01 \mathrm{au}$, we find from eq 5 $\Delta E_{\mathrm{BH}_{3} \mathrm{CO}}$ (corr) $=-0.21 \pm 0.01 \mathrm{au}$. Now using eq 4 and the atomic correlation energies ${ }^{33}$ for $\mathrm{B}(-0.125 \mathrm{au}), \mathrm{C}(-0.158$ $\mathrm{au})$, and $\mathrm{O}(-0.258 \mathrm{au})$, we can derive the total molecular correlation energy of $E_{\mathrm{BH}_{3} \mathrm{CO}}$ (corr) $=-0.75 \pm 0.01$ au. Moreover, if we decompose the $\mathrm{BH}_{3} \mathrm{CO}$ molecular extra correlation into parts corresponding to BH_{3} and CO , then we can identify the remainder

$$
\begin{align*}
& \Delta E_{\mathrm{B}-\mathrm{C}}(\text { corr })=\Delta E_{\mathrm{BH}_{3} \mathrm{CO}}(\mathrm{corr}) \\
& \quad-\Delta E_{\mathrm{BH}_{3}}(\mathrm{corr})-\Delta E_{\mathrm{CO}}(\mathrm{corr}) \tag{6}
\end{align*}
$$

with formation of the molecular complex. Using eq 5 again, we estimate $\Delta E_{\mathrm{BH}_{3}}$ (corr) $=-0.069 \pm 0.005$ au and $\Delta E_{\mathrm{CO}}-$ (corr) $=-0.115 \pm 0.003 \mathrm{au}$. Thus, we obtain $\Delta E_{\mathrm{B}-\mathrm{C}}$ (corr) $=-0.03 \pm 0.01$ au for the correlation energy contribution to $-\Delta E(1)$, the energy change associated with reaction 1 . (The uncertainties represent crude guesses of confidence limits.)

In Table IV we list total energies for species involved in reactions $1-3$. The earlier $a b$ initio calculations report values of $22.7,{ }^{10} 10.4,9 \mathrm{~b}$ and $24.2^{8} \mathrm{kcal} / \mathrm{mol}$ for ΔE of reaction 1 , in drastic disagreement with the present estimated Hartree-Fock value of $6.4 \mathrm{kcal} / \mathrm{mol}$ (Table IV). The use of smaller basis sets and slightly different geometries ${ }^{8,10}$ are probable roots of the discrepancies. (Our minimal STO and double- ζ Gaussian basis sets yield 4.0 and $8.1 \mathrm{kcal} / \mathrm{mol}$ for reaction 1 , respectively. The results in ref 8 and 10 point to possible basis set imbalance problems and subsequent loss of accuracy when ΔE is obtained as a small difference between large numbers.) Our "experimental" data are taken from the sources listed in ref 23 and in footnotes to Table I of ref 31 . However, not all of the figures dependent on experimental data may be significant, and we caution the reader to expect uncertainties as large as $5 \mathrm{kcal} / \mathrm{mol}$, which is for instance the approximate discrepancy in ΔE found for reactions $1-3$ from thermochemical ${ }^{23}$ and appearance-potential ${ }^{24}$ measurements. The ΔE 's quoted in Table IV do show the importance of electron correlation in determining the heats of these particular reactions. ${ }^{34}$ In every case, $\Delta E($ corr $)>\Delta E(\mathrm{HF})$.

We have attempted to analyze ΔE (corr) in terms of the electron-pair model proposed by Snyder ${ }^{35}$ for reactions between closed shell molecules, but have been able to do so with only modest success. For example, Snyder writes

Table IX. Borine Carbonyl Localized Molecular Orbitals (LMO's) Relative to the ($2 \mathrm{~s} / \mathrm{p} / \mathrm{l}$) STO Basis Set

	$\mathrm{B}_{1 \mathrm{~s}}$	C_{1}	$\mathrm{O}_{1 \mathrm{~s}}$	$\mathrm{O}_{l \mathrm{p}}$	BC	$\mathrm{BH}^{\text {a }}$	CO^{a}
ls H_{1}	0.0326	-0.0071	0.0005	0.0048	-0.0501	0.5854	-0.0388
1s B	-1.0093	-0.0037	0.0001	0.0048	-0.0358	-0.0526	-0.0026
2 sB	0.0172	0.0022	0.0045	-0.0002	0.0138	0.2859	-0.0163
2p: B	-0.0134	0.0026	0.0006	-0.0229	0.2056	0.0973	0.0029
1 s C	-0.0028	-1.0155	-0.0028	-0.0306	-0.0788	0.0051	0.0336
2s C	0.0157	0.0753	-0.0016	0.1914	0.7548	-0.0887	-0.1164
2p:C	0.0174	-0.0286	0.0165	0.2126	-0.5018	0.0284	-0.1725
1 s 0	0.0002	-0.0025	-1.0207	0.0726	0.0107	-0.0111	0.0449
2 sO	0.0022	0.0091	0.1182	-0.8368	-0.0555	0.0148	-0.3147
$2 \mathrm{p}=\mathrm{O}$	0.0027	-0.0328	0.0264	-0.0632	0.0852	-0.0137	0.2590
1 s H 2.3						-0.0349	0.0173
$2 \mathrm{p}_{x} \mathrm{~B}$						0.4019	-0.0342
$2 p_{x} \mathrm{C}$						0.1111	0.3878
$2 \mathrm{p}_{x} \mathrm{O}$						-0.0881	0.6250

[^1]Table X. sp^{n}-Hybridization Coefficients of Boron Atomic Orbitals in $\mathrm{BH}_{3} \mathrm{CO}$

Case	Tetrahedral	Exptl a	Localized	
		Trigonal		
θ	$109^{\circ} 28^{\prime}$	$113^{\circ} 52^{\prime}$	$118^{\circ} 34^{\prime}$	120°
sp^{n}	sp^{3}	$\mathrm{sp}^{2.47}$	$\mathrm{sp}^{2.09}$	sp^{2}
$\mathrm{~B}_{2 s}$	0.5000	0.5367	0.5687	0.5774
$\mathrm{~B}_{2 \mathrm{p}_{\mathrm{p}}}$	-0.2887	-0.2128	-0.1935	0.0
$\mathrm{~B}_{2 \mathrm{p}_{x}}$	0.8165	0.8165	0.7994	0.8165

a The coefficients were generated by assuming the hybrids point directly at the H atoms with the molecule in its equilibrium geometry, and by using the general relationship for sp^{n}, where $\theta=-s^{-1}$, n yields the normalized hybrid $(n+1)^{-1 / 2}\left[\phi_{2 s}+\sqrt{n} \phi_{2 p j}\right]{ }^{b}$ The values of θ and n were computed by using the coefficients of the boron. $2 \mathrm{~s} .2 \mathrm{p}_{z}$, and $2 \mathrm{p}_{x}$ orbitals (renormalized to one) from LMO number 6 of Table 1X.

$$
\begin{equation*}
\Delta E_{\text {corr }}(3)=-6\left(\mathrm{~b}^{2} / \mathrm{b}^{\prime 2}\right)-4\left(1 \mathrm{~s}^{2} / \mathrm{val}\right) \tag{7}
\end{equation*}
$$

where the bond-other-bond $\left(b^{2} / b^{\prime 2}\right)$ and core-valence ($1 \mathrm{~s}^{2} / \mathrm{val}$) correlation energies are given empirical values of -0.0118 and -0.0027 au , respectively, and lead to $\Delta E_{\text {corr }}(3)=51.2 \mathrm{kcal} / \mathrm{mol}$. Even allowing for sizable error limits in Table IV, we conclude that a more complete model of correlation corrections is needed for reaction 3 , such as that given by Ahlrichs ${ }^{36 \mathrm{a}}$ who obtains $\Delta E(3)=36 \mathrm{kcal} / \mathrm{mol}$ and $\Delta E_{\text {corr }}(3)=15.7 \mathrm{kcal} / \mathrm{mol}$ using the coupled electronpair approximation with a basis set of slightly better quality $\left(E_{\mathrm{B}_{2} \mathrm{H}_{6}}=-58.82699 \mathrm{au}\right)$ than our best basis. His result ${ }^{36 \mathrm{a}}$ of $20.7 \mathrm{kcal} / \mathrm{mol}$ at the Hartree-Fock level $\left[\Delta E_{\text {SCF }}(3)\right]$ is in reasonable agreement with our value reported in Table IV. Dixon, Pepperberg, and Lipscomb ${ }^{36 b}$ used a minimal STO basis set with CI including all single and double excitations from the valence shell to obtain $\Delta E(3)=16.9 \mathrm{kcal} /$ mol with $\Delta E_{\mathrm{SCF}}(3)=7.5 \mathrm{kcal} / \mathrm{mol}$ and $\Delta E_{\text {corr }}(3)=9.4$ $\mathrm{kcal} / \mathrm{mol}$. The fact that they recovered approximately half of the SCF and correlation contributions suggests that basis set limitations present problems at both levels of approximation. Nevertheless, one might hope that Snyder's model for the BC bond formation in reaction 1 would distinguish between bonding and nonbonding pair forces and would facilitate our understanding of correlation effects for this class of molecular complexes. Unfortunately, both types of pairs yield $\Delta E_{\text {corr }}$ (1)'s that are in order of magnitude disagreement with the data in Table IV, and point again to the need for a more sophisticated analysis.

We therefore turn to other means for probing the nature of the formation of the $\mathrm{BH}_{3} \mathrm{CO}$ complex. A first indication of the bonding interaction may be observed in the molecular orbital energies ϵ from our largest GTO basis set for $\mathrm{BH}_{3} \mathrm{CO}$ and BH_{3} and CO molecules as given in Table V . While the deformation of CO shows negligible effects, the change in BH_{3} from planar to pyrimidal forms indicates a tendency for the le and $3 \mathrm{a}_{1}$ MO's to destabilize. The accompanying deformation energies are 0.3 and $13.7 \mathrm{kcal} /$ mol for CO and BH_{3}, respectively. This may be compared with the stabilization energy of $\mathrm{BH}_{3} \mathrm{CO}$ of $6.4 \mathrm{kcal} / \mathrm{mol}$ (Table IV). The lowest virtual orbitals of BH_{3} and CO are seen to be of $3 a_{1}$ and 2π symmetry, with the former approximately a factor of 3 lower. This is consistent with earlier analyses ${ }^{2,8,10}$ that attribute the bonding in $\mathrm{BH}_{3} \mathrm{CO}$ to interaction of the $5 \sigma \mathrm{MO}$ of CO with the vacant $3 \mathrm{a}_{1} \mathrm{MO}$ of BH_{3} and a concomitant, but smaller, interaction of the le MO of BH_{3} with the vacant $2 \pi \mathrm{MO}$ of CO . This supports Mulliken's ${ }^{2}$ categorization of CO as an "amphodonor", that is, a molecule with both electron donor and acceptor capabilities. The core ϵ 's in $\mathrm{BH}_{3} \mathrm{CO}$ indicate that the 1s elec-

Table XI, LMO Contributions to the Dipole Moment of $\mathrm{BH}_{3} \mathrm{CO}$ (au) ${ }^{a}$

LMO	B origin	C origin
Oxygen Is	-10.0571	-4.2367
Carbon 1 s	-5.7883	+0.0319
Boron s	-0.0669	+5.7534
Oxygen $/ \mathrm{p}$	-6.3161	-0.4957
B-C bond	-4.8828	+0.9376
Banana bonds	-24.6470	-7.1860
B-H bonds	-3.3130	14.1479
Total electronic	-55.0712	8.9524
Total nuclear	56.1345	-7.8891
Net moment	1.0633	1.0633

${ }^{a} 1 \mathrm{au}=2.5415 \mathrm{D}$. The values quoted here are based on the minimal ($2 \mathrm{~s} / \mathrm{p} / \mathrm{ls}$) STO basis set in Table IIA.
trons of carbon and oxygen are more tightly bound than in free carbon monoxide, whereas the boron is electrons are somewhat less tightly bound. This information, taken with similar apparent stabilization effects for the $4 \mathrm{a}_{1} \mathrm{MO}$, shows that the CO bond in $\mathrm{BH}_{3} \mathrm{CO}$ is somewhat stronger than in free CO . This may be attributed to the use of the $5 \sigma \mathrm{MO}$ of CO , which is antibonding in nature, in a bonding interaction with the $3 \mathrm{a}_{1} \mathrm{MO}$ of BH_{3}. Conversely, electron transfer from the le MO of BH_{3} into the $2 \pi \mathrm{MO}$ of CO shows a slight destabilization in the 2 e MO of $\mathrm{BH}_{3} \mathrm{CO}$ since bonding electrons in BH_{3} move toward the CO end.

Population analyses for the four $\mathrm{BH}_{3} \mathrm{CO}$ wave functions described earlier are given in Table VI. Overall, they show similar trends but the absolute magnitudes differ considerably. In particular, the minimal STO basis set assigns a positive charge to the boron atom, even though the BH_{3} fragment taken as a whole is negative. The polarization functions are seen to increase the transfer of electrons from the CO to the BH_{3} end and also show the tendency for migration of electrons to the H atoms. The overlap populations indicate that the strongest bonds are, of course, between C and O and B and H . The B to C bond is somewhat less than half as strong as that of B to H, which may be considered a normal single bond. The overlap populations between the remaining atoms in the system are all negative and relatively small.

The changes occurring in the formation of the $\mathrm{BH}_{3} \mathrm{CO}$ complex are also manifested in terms of population analyses as shown in Table VII. The gross atomic and overlap populations have been broken down into the portions due to the a_{1} or σ and e or π MO's to better exhibit the interactions. The gross atomic population of the boron atom in $\mathrm{BH}_{3} \mathrm{CO}$ is seen to gain electronic charge in the a_{1} MO's and lose charge in the e MO's relative to isolated BH_{3}. A similar but opposite effect is seen for carbon. The oxygen atom is not much affected by the complex formation, suggesting that the process is localized at the carbon end of CO . The H atoms show an increase in electron population from the a MO's and a decrease from the e MO's.

The overlap populations show similar trends. Complex formation increases the CO overlap by a factor of 2 in the σ MO's and decreases it slightly in the π MO's. The B-C bond overlap populations from the a_{1} and e MO's are about equal. The importance of the latter MO's is enforced also by a positive overlap between the e MO's of C and H even though the total $\mathrm{C}-\mathrm{H}$ overlap is negative. These results indicate that hyperconjugative stabilization is relatively important in $\mathrm{BH}_{3} \mathrm{CO}$. While this conclusion is in qualitative agreement with earlier minimal STO basis set calcula-

Figure 1. Oxygen-lone-pair orbital in the $x z$ plane. Density contours in units of e/ $a_{0}{ }^{3}$ for one electron.
tions, ${ }^{8,10}$ the increased basis set size, particularly the addition of polarization functions, seems to improve the bonding environment for the complex and enhance the importance of hyperconjugation.

This charge rearrangement is reflected to some extent in all of the properties listed in Table VIII, especially in the dipole moment μ_{z} along the threefold (z) axis, and in the electric fields \mathbf{E} and their gradients \mathbf{q} at the heavy-atom positions. We can obtain some absolute measure on the accuracy of our wave functions by comparing these quantities, or those derived from them, with experiment or with purely theoretical conditions that exact Hartree-Fock wave functions must satisfy. Turning first to μ_{z}, which is indeed directed $\mathrm{B}^{-}-\mathrm{C}^{+}$as the net charges suggest, we find that the Slater minimum basis-set function yields a moment that is too large by a factor of 1.5 from the experimentally determined value ${ }^{4}$ of $0.7062 \mathrm{au}(1.795 \mathrm{D})$. Addition of polarization functions reduces the calculated value to the point where our most refined GTO basis comes within less than 4% of reproducing the measurement. Components of the electric field vector can perhaps be summarized best in the sum of forces 7 over all the nuclei which should equal zero ${ }^{37}$ in all directions if the basis set is complete (HartreeFock limit) and the geometry has been optimized. For $\mathrm{BH}_{3} \mathrm{CO}$, the x - and y-force sums are zero by symmetry; however, we see that $\left\langle\mathcal{F}_{z}\right\rangle$ is indeed sensitive to basis set and decreases by nearly an order of magnitude from left to right in Table VIII, showing again the substantial improvement that can be attributed to the polarization functions.

The only other property for which we have experimental data is the ${ }^{11} \mathrm{~B}$ quadrupole coupling constant $\left(e q_{z z} Q_{\mathrm{B}}\right) / h$ that was discussed by Das^{11} in a semiquantitative manner using valence-theory arguments about bonding in the molecule, and in the measurements of Gordy, Ring, and Burg ${ }^{5}$ who report $\left(e q_{z z} Q_{\mathrm{B}}\right) / h=1.55 \pm 0.08 \mathrm{MHz}$. If we now use Nesbet's ${ }^{38}$ value for the ${ }^{11} \mathrm{~B}$ nuclear quadrupole moment $Q_{\mathrm{B}}=0.04065 \pm 0.00026 \mathrm{~b}$, we find $\left\langle q_{z z}\right\rangle_{\mathrm{B}}=0.16 \pm 0.01$ au. The discrepancy between this and our best calculated value of 0.22 au is probably due to residual basis set inadequacy, though correlation or vibrational effects may also be partly responsible. Additional d functions on the heavy

Figure 2. LMO banana-bond density contours in the $x z$ plane and in units of e/ $a_{0}{ }^{3}$ for one electron.
atoms. d functions centralized in the core region of the B atom, and perhaps p orbitals on H to maintain balance would be worthwhile in future work. The remaining properties in Table VII have not been subject to experimental tests, but they too appear to have converged reasonably well within the Hartree-Fock approximation.

The output of Hartree-Fock self-consistent-field calculations is a set of canonical MO's that are delocalized over the entire molecule. Although such a description is very useful for some purposes (e.g., discussion of electronic transitions), a physical interpretation of bonding in terms of directed valence theory is often obscure. One method of extracting this information is to transform the orbitals in such a way as to maximize the intra-orbital repulsion energies as was suggested by Edmiston and Ruedenberg (ER). ${ }^{39}$ The result is a description of the electron distribution that resembles the traditional concepts of "lone pairs", "pair bonds", and "inner-shells". As is known, because the transformation between the two descriptions is unitary, values of one-electron properties are unchanged.

Minimal basis set wave functions have traditionally been used for analyses in terms of valence theories. In general, the level of sophistication is sufficient to expose the qualitative features. Accordingly, we transform the canonical ($2 \mathrm{~s} 1 \mathrm{p} / \mathrm{ls}$) MO's into localized forms (LMO's). ${ }^{25,26}$ The STO coefficients for each LMO given in Table IX may be classified in seven categories: boron ls, carbon 1s, oxygen 1s, oxygen lone pair, BC bond, BH bonds, and CO "banana" bonds. These coefficients can be used to generate electron density maps that display pictorially the most prominent features of each LMO.

Figures $1-3$ iilustrate the CO bonding in $\mathrm{BH}_{3} \mathrm{CO}$. It is very instructive to compare them with the maps of England, Salmon, and Ruedenberg ${ }^{40}$ for an isolated carbon monoxide molecule because they show only minor differences. As one might expect, all of the C and O inner-shell orbitals are indistinguishable, and even the oxygen lone pair (Figure 1) is virtually identical with that in carbon monoxide. The CO "banana bonds" (Figure 2) show a slight tendency to delocalize onto the hydrogen atoms, but are only somewhat less shifted in the direction of the oxygen atom than in carbon monoxide. A cut through the CO bond perpendicular to the

Figure 3. Cross section of the banana orbital in Figure 2 parallel to the $x y$ plane and bisecting the CO distance. The other two banana orbitals (not shown) are identical with this one but are rotated by 120 and 240°. respectively. Density contours are in e/a0 for one electron.
internuclear axis (Figure 3) shows that the region of maximum electron density lies between the H_{2} and H_{3} atoms. This preferential conformation of the "banana bonds", "trans" relative to the BH_{3} fragment, was not found when the ER procedure was employed. It is surmised that interaction between the BH bonds and the "banana" bonds is so small that the 2×2 rotations employed in this method could not lead to an absolute maximum of the self-energy. The procedure used here was devised by Taylor and Liang ${ }^{25.26}$ and utilizes the method of principle ascents in treating all of the canonical MO's in a single diagonalization per cycle, thereby circumventing the problems inherent in the 2×2 method. The resultant LMO's for $\mathrm{BH}_{3} \mathrm{CO}$ are identical with those generated using the ER method with the exception that the "banana" bonds are oriented trans to the BH_{3} fragment. (The ER procedure was found to yield this result if these LMO's are used as starting guesses.)

The boron-carbon bond (Figure 4) has the appearance of a distorted carbon lone pair when compared with carbon monoxide. ${ }^{40}$ In the course of exploring a potential energy surface for $\mathrm{BH}_{3} \mathrm{CO}$, using the minimal STO basis set, it was found that the optimum boron-carbon internuclear distance is 0.41 bohr longer than the experimental R_{BC} of 2.91 bohr. The other geometric parameters were all within 4% of the experimental values. Although the surface is extremely flat in the B-C direction, it appears from Figures 4 and 5 that a longer R_{BC} would be more favorable to back-bonding by the H atoms into the vacant $\mathrm{CO} 2 \pi \mathrm{MO}$.

The boron-hydrogen bond (Figure 5) seems to support the suggestion that part of the attractive interaction between the CO and BH_{3} fragments in $\mathrm{BH}_{3} \mathrm{CO}$ can be attributed to overlap of the carbon "banana" bonds and the boron-hydrogen bonds. The electron density around the hydrogen atom is somewhat delocalized toward the BC-bond region and takes on the appearance of a three-center bond.

The three BH bonds may be discussed in terms of sp^{n} hybridization. Here, $n=-\mathrm{s} \theta$ where θ is the angle between equivalent hybrid lobes. A comparison among the sp^{3} - and sp^{2}-hybridization coefficients shows those predicted by the

Figure 4. Boron-carbon LMo density in the $x z$ plane and in units of $\mathrm{e} / a_{0}{ }^{3}$ for one electron. The hydrogen atom labeled H_{1} is in the plane; whereas H_{2} and H_{3} are above and below it as indicated by the dotted circle.

Figure 5. $\mathrm{LMO}-\mathrm{BH}_{1}$ density in the $x z$ plane and in units of e/ $a_{0}{ }^{3}$ for one electron. The hydrogen atom positions are the same as in Figure 4.
geometry of $\mathrm{BH}_{3} \mathrm{CO}$ lead to $\mathrm{sp}^{2.47}$ hybridization whereas the LMO's yield $\mathrm{sp}^{2.09}$. The increase in θ between the hybrid lobes suggests that the BH_{3} fragment seeks to retain its planar (sp^{2}) form considerably more than the equilibrium geometry indicates.

The LMO description of $\mathrm{BH}_{3} \mathrm{CO}$ supports the contention that the molecule is essentially two identifiable fragments which interact weakly through a dative BC bond. The fact ${ }^{6}$ that the vibrational frequencies involving motion of the BH_{3} fragment relative to the CO fragment are small in comparison to other modes lends further credence to this picture.

Our interpretation of the bonding in $\mathrm{BH}_{3} \mathrm{CO}$ has been in terms ${ }^{2}$ of "whole-complex MO's". It is also possible alter-
natively to use the resonance-structure concept and write ${ }^{2}$ the molecular wave function as

$$
\begin{align*}
\Psi=a \Psi_{0}\left(\mathrm{OC}, \mathrm{BH}_{3}\right)+b \Psi_{1}\left(\mathrm{OC}^{+}\right. & -\mathrm{BH}_{3}^{-} \\
& +c \Psi_{2}\left(\mathrm{OC}^{-}-\mathrm{BH}_{3}^{+}\right) \tag{8}
\end{align*}
$$

where the Ψ_{0} is the so-called no-bond structure, Ψ_{1} represents the n-donor action of the CO and v-acceptor action of BH_{3}, and Ψ_{2} describes the hyperconjugative action of BH_{3} as a quasi- π donor into the vacant 2π MO of $\mathrm{CO} .\left[\mathrm{BH}_{3}\right.$ is sometimes designated a " b acceptor" because of the presence of the third term in eq 8.] Examining Figures 4 and 5, it appears that $b>c$ for the reasons that we have already discussed. In fact, this is in agreement with Gordy, Ring, and Burg, ${ }^{5}$ with Mulliken and Person ${ }^{2}$ (who conclude also that $a>b>c$), and with Kato et al. ${ }^{8}$ (who report values of $a=0.548, b=0.298$, and $c=0.147$ based on their minimal basis set plus CI calculations).

The origin of the dipole moment can be examined more quantitatively using the data in Table XI where individual LMO contributions are given for two origins of the coordinate vector. Taking boron as origin, for instance, and assigning two units of nuclear charge to each LMO, it is found that the B-H bonds (-5.02 au) subtract somewhat less than the oxygen lone pair (3.78 au), the B-C bond (0.94 au), and the banana bonds (1.36 au) collectively, and with the latter positive contributions determining the net sign.

Further analysis of the $\mathrm{BH}_{3} \mathrm{CO}$ molecule is being carried out ${ }^{41}$ using the energy decomposition scheme of Iwata and Morokuma ${ }^{42}$ who expressed the total energy in terms of electrostatic, polarization, exchange, and charge-transfer contributions. In this manner it is hoped that the nature of the bonding interaction can be assigned more clearly to chemically identifiable contributions. The net stabilization of the complex due to hyperconjugation ${ }^{12 \mathrm{~b}}$ may also be quantitatively defined. The location of possible charge transfer and other excited states of the complex, potential energy surfaces, and the effects of electron correlation should be investigated in future work.

Acknowledgment, We thank M. J. T. Bowers for generating the LMO maps, Dr. J. H. Liang for making available her localization program, and the Instruction and Research Computation Center of The Ohio State University for providing a grant of computer time. Professor R. S. Mulliken and Dr. P. Baybutt made valuable comments on the manuscript.

References and Notes

(1) (a) Ohlo State Unlversity; (b) Battelle-Columbus Laboratories.
(2) R. S. Mulliken and W. B. Person, "Molecular Complexes: A Lecture and Reprint Volume", Wiley-Interscience, New York, N.Y., 1969, Chapters 12 and 17.
(3) (a) A. B. Burg and H. I. Schlesinger, J. Am. Chem. Soc., 59, 780 (1937); (b) S. H. Baver, lbld., 59, 1804 (1937).
(4) M. W. P. Strandberg, C. S. Pearsall, and M. T. Welss, J. Chem. Phys., 17, 429 (1949).
(5) W. Gordy, H. Ring, and A. B. Burg, Phys. Rev., 78, 512 (1950).
(6) G. W. Bethke and M. K. Wilson, J. Chem. Phys., 28, 1118 (1957).
(7) V. Devarajan and S. J. Cyvin, J. Mol. Struct., 9,265 (1971). These authors glve the most recent summary of molecular constants and discuss previous work, including the key papers clted In our ref 4-6.
(8) S. Kato, H. Fulimoto, S. Yamabe, and K. Fukui, J. Am. Chem. Soc., 98, 2024 (1974).
(9) (a) H. Basch, Chem. Phys. Left., 12, 110 (1971). The $\mathrm{BH}_{3} \mathrm{CO}$ energies reported in thls paper are Incorrect. The total energy should be -138.8345 au , and its decomposition should be sultably modifled. Professor Basch has confirmed this revised result. (b) L. C. Snyder and H. Basch, ''Molecular Wave Functlons and Properties', Wliey-Interscience, New York, N. Y., 1972, pp T-154-5.
(10) D. R. Armstrong and P. G. Perkins, J. Chem. Soc., 1044 (1969).
(11) T. P. Das, J. Chem. Phys., 27, 1 (1957).
(12) (a) J.-F. Labarre and C. Lelbovici, J. Chim. Phys. Phys.-Chim. Blol., 69, 404 (1972); (b) K. F. Purcell and R. L. Martin, Theor. Chim. Acta, 35, 141 (1974).
(13) W. E. Palke and W. N. Lipscomb, J. Am. Chem. Soc., 88, 2384 (1966).
(14) A. D. McLean, J. Chem. Phys., 32, 1595 (1960).
(15) E. Clementi, IBM J. Res. Dev., 9, 2 (1965).
(16) (a) T. H. Dunning, Jr., J. Chem. Phys., 53, 2823 (1970); (b) 55, 3958 (1971)
(17) W. M. Huo, J. Chem. Phys., 43, 624 (1965).
(18) S. Rothenberg and H. F. Schaefer III, J. Chem. Phys., 54, 2764 (1971).
(19) C. C. J. Roothaan, Rev. Mod. Phys., 23, 69 (1951).
(20) R. M. Stevens, "Independent Integrals Package", Program 161, Quantum Chemistry Program Exchange, Indiana University, 1964, and private communication.
(21) D. B. Neumann, H. Basch, R. L. Kornegay. L. C. Snyder. J. W. MoskowItz, C. Hornback, and S. P. Liebmann, Polyatom Program 199, Quantum Chemistry Program Exchange, Indiana University, 1972.
(22) R. M. Pitzer, J. Chem. Phys., 59, 3308 (1973). See also, N. W. WInter, W. C. Ermier, and R. M. Pitzer, Chem. Phys. Lett., 19, 179 (1973).
(23) The sources of our data are: atomic energies, P. E. Cade and W. M. Huo, J. Chem. Phys., 47, 614 (1967), Appendix I; heats of formation, D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M. Balley, and R. H. Schumm, Natl. Bur. Stand. (U.S.), Tech. Note, No, 270-3 (1968); T. Schimanouchi, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand., No, 6 (1967).
(24) P. S. Gangulin and H. A. McGee, J. Chem. Phys., 50, 4658 (1969).
(25) J. H. Liang, Ph.D. Thesis, The Ohlo State University, 1970.
(26) W. J. Taylor, J. Chem. Phys., 48, 2385 (1968).
(27) For additional Illustrations of the use of this program, see R. A. Hegstrom, W. E. Palke, and W. N. Lipscomb, J. Chem. Phys., 48, 920 (1967), and T. H. Dunning, Jr., and N. W. Winter, ibid., 55, 3360 (1971).
(28) R. M. Pitzer and D. P. Merrifield, J. Chem. Phys., 52, 4782 (1970).
(29) T. H. Dunning, Jr., R. M. Pitzer, and S. Aung, J. Chem. Phys., 57, 5044 (1972).
(30) H. Popkie, H. Kistenmacher, and E. Clementl, J. Chem. Phys., 59, 1325 (1973)
(31) W. C. Ermier and C. W. Kern, J. Chem. Phys., 61, 3860 (1974).
(32) C. Hollister and O. Sinanoglu, J. Am. Chem. Soc., 88, 13 (1966).
(33) E. Clementl and A. D. McLean, Phys. Rev., 133, A419 (1964).
(34) R. Ahirlchs, Theor. Chim. Acta, 17, 348 (1970). See also C. Edmiston and P. Linder, Int. J. Quantum Chem., 7, 309 (1973); J. H. Hall, Jr., D. S. Marynick, and W. N. Llpscomb, Inorg. Chem., 11, 3126 (1972),
(35) L. C. Snyder, "Thermochemistry and the Electronic Structure of Molecules'", R. A. Welch Foundation Research Bulletin No. 29. August 1971. See also, L. C. Snyder and H. Basch, J. Am. Chem. Soc., 81, 2189 (1969).
(36) (a) R. Ahlrichs, Theor. Chim. Acta, 35, 59 (1974); (b) D. A. Dixon, I. M. Pepperberg, and W. N. Llpscomb, J. Am. Chem. Soc., 98, 1325 (1974).
(37) C. W. Kern and M. Karplus, "Water: A Comprehensive Treatise", Plenum Press, New York, N. Y., 1972, pp 36-38.
(38) R. K. Nesbet, Phys. Rev. Lett., 24, 1555 (1970).
(39) C. Edmiston and K. Ruedenberg, J. Chem. Phys., 43, S97 (1965).
(40) W. England, L. S. Salmon, and K. Ruedenberg, Fortschr. Chem. Forsch., 23, 31 (1971).
(41) H. Umeyama and K. Morokuma, to be published.
(42) S. Iwata and K. Morokuma, J. Am. Chem. Soc., 95, 7563 (1973).

[^0]: ${ }^{a}$ For definitions. see D. Neumann and J. W. Moskowitz. J. Chem. Phys., 49, 2056 (1968).

[^1]: ${ }^{a}$ The LMO's for the other two BH and two CO banana bonds are related to the LMO's quoted here by 120 and 240° rotations.

